
DE-4000 SCRIPTING REFERENCE MANUAL
Form:DE-4000 SCRIPTING REFERENCE MANUAL:02-26

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

i

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

ii

Table of Contents
DE-4000 SCRIPTING REFERENCE MANUAL 1 ..
1. Begin on Dashboard on DE-4000 system environment 1 ..
2. Choose “Global” from menu on left side of screen 2 ..
3. In the Sub-Menu on the Left side select “Scripts” 2 ...
4. Select one of the page icons under one of the 4 script options to open editor 3
5. Scripting can be entered into the editor 3 ..

5.1 DE-4000 Lua Script API 5 ...
5.2 Master Control Script 10 ..

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

iii

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

iv

DE-4000 SCRIPTING REFERENCE MANUAL

There is a delicate balance between providing a system that has capabilities that can be configured
through a fixed set of options, and one that can be extended and expanded with custom
programming. In designing the DE-4000 control system, the choice was made to provide a system
where most applications can be met with simple configuration, but advanced functionality can be
provided through custom programming using the “Lua” language.

Lua is often referred to as a scripting language. Scripting languages differ from compiled languages
as they eliminate extra step of compiling the written program into machine code.

Lua comes with a background of being robust, fast, and geared towards embedded applications, with
a proven track record in the gaming industry. For the DE-4000 system it is small and fits in the
memory we have available, holds a lot of power, and keeps it simple for writing in the language. All
information regarding the Lua scripting language is located at https://Lua.org Using the Lua engine as
an embedded tool allows for taking advantage of a full architecture and standard at your fingertips.
Within the language there are all of the normal attributes to programming such as functions,
variables, statements, expressions etc. All of this reference material can be found at https://lua.org/
manual/5.3/ For getting started and using a guided reference, there are several editions of
“Programming in Lua” available. Most recent editions are a paid for product that come in paper back
or ebook form. While testing out Lua and becoming familiar, a free first edition is available and covers
a lot of learning needs to get comfortable with the language. It can be located at
https://www.lua.org/pil/contents.html. A major advantage to using Lua is its inherent ability to allow
custom functions. While all normal functions and calls are published, there is the ability to add new
functions in the DE-4000 firmware. Once new functions are defined and have calls to their internal
properties, they then can be published for the user. This includes functions such as our flexible
Modbus table and talking with various terminal boards linked in the system. Below is the start to the
list of Altronic based functions. As functionality and features come to life through new ideas, this
document will continually get updated with the latest scripts that we make available.

GETTING STARTED WITH DE-4000 SCRIPTS Basic Scripting on DE-4000

1. Begin on Dashboard on DE-4000 system environment

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

1

https://Lua.org
https://lua.org/
https://www.lua.org/pil/contents.html

2. Choose “Global” from menu on left side of screen

3. In the Sub-Menu on the Left side select “Scripts”

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

2

https://www.staging.altronic.a2hosted.com/lib/exe/detail.php?id=documents%3Ade4000%3Ade4000script&media=documents:de4000:scripting_dashboard_1.jpg
https://www.staging.altronic.a2hosted.com/lib/exe/detail.php?id=documents%3Ade4000%3Ade4000script&media=documents:de4000:scripting_dashboard_2.jpg

4. Select one of the page icons under one of the 4 script
options to open editor

5. Scripting can be entered into the editor

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

3

https://www.staging.altronic.a2hosted.com/lib/exe/detail.php?id=documents%3Ade4000%3Ade4000script&media=documents:de4000:scripting_dashboard_3.jpg
https://www.staging.altronic.a2hosted.com/lib/exe/detail.php?id=documents%3Ade4000%3Ade4000script&media=documents:de4000:scripting_dashboard_4.jpg

Scripting Windows and examples

Master Script The Master Script section is the Primary scripting environment. Primary
scripting functions can be written in this section.

Example:

local suction = get_channel_val(1,1)
local discharge1 = get_channel_val(1,3)
diff = discharge1 - suction
set_sVirt(“Difference”, diff)

The first line gets the channel value from Terminal board 1 Input 1 and stores it in local variable
named suction. The second line gets the channel value from Terminal board 1 Input 3 and stores it in
local variable named discharge1. The third line takes the discharge1 pressure and subtracts the
suction pressure and stores it in the global variable named diff (NOTE: Any value that you want to
access from another scripting section must be stored in a global variable. This is used most in calling
values into Modbus registers as explained below). The fourth line copies the value from diff and stores
it into the Virtual status channel named “Difference” This channel can be displayed on the Dashboard.

Control Script The Control Script section is used to override the default control
strategy found on the Global/Control page. A copy of the default control script (found in attached
appendix) can be copied into this section and then modified to change the control functionality as well
as add additional control loops beyond the default 2.

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

4

https://www.staging.altronic.a2hosted.com/lib/exe/detail.php?id=documents%3Ade4000%3Ade4000script&media=documents:de4000:scripting_dashboard_5.jpg
https://www.staging.altronic.a2hosted.com/lib/exe/detail.php?id=documents%3Ade4000%3Ade4000script&media=documents:de4000:scripting_dashboard_master_script.jpg
https://www.staging.altronic.a2hosted.com/lib/exe/detail.php?id=documents%3Ade4000%3Ade4000script&media=documents:de4000:scripting_dashboard_control_script.jpg

Modbus Script The Modbus Script section is used to move data into and out of Modbus
registers

defaultModbus()
set_modbus(300,diff)

The first line pulls in the factory set Modbus mapping The second line moves the value from the global
variable named diff into the 40300 Modbus Register

5.1 DE-4000 Lua Script API

CUSTOM FUNCTIONS FOR SCRIPTING

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

5

https://www.staging.altronic.a2hosted.com/lib/exe/detail.php?id=documents%3Ade4000%3Ade4000script&media=documents:de4000:scripting_dashboard_control_script_2.jpg
https://www.staging.altronic.a2hosted.com/lib/exe/detail.php?id=documents%3Ade4000%3Ade4000script&media=documents:de4000:scripting_dashboard_modbus_script.jpg
https://www.staging.altronic.a2hosted.com/lib/exe/detail.php?id=documents%3Ade4000%3Ade4000script&media=documents:de4000:scripting_dashboard_modbus_script_2.jpg

create_param("index",default,"catergory","description")

creates a user configurable parameter
parameter is stored as index,
default value(If not changed by user) is default
parameters will be grouped on the Global/Params page by category
description is text to describe the parameter to the user

Example:

create_param("NumEngCyl",8,"Engine Params","Num. of Engine Cylinders")

get_channel_val(terminal,channel)

returns current value of analog input channel on terminal module terminal
return value type is numeric

Example:

local sp = get_channel_val(1,5)

reads value of Suction Pressure from Terminal Module #1 , Input #5

get_gbl("index",default)

returns global config setting stored under index or returns default if not defined

note: get_gbl is used to retrieve global CONFIGURATION settings that are typically set when
the system is configured and do not change as the system is running. If you want to set and
retrieve global STATUS variables use the get_sGbl() and set_sGbl() functions >If you want to
create and read virtual channels use the set_sVirt() and get_sVirt() functions.

Example:

local nt = get_gbl("NumTerm",1)

gets the number of terminal boards installed in the system

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

6

get_param("index")

return either the default value or the user configured value of the parameter index

Example:

get_param("NumEngCyl")

>gets the configured parameter for number of engine cylinders

get_rpm(channel)

reads the RPM input channel in units of revolutions per minute

note: valid channel numbers are 1 - 10(2 channels per board, up to 5 terminal boards)

Each Terminal Module has 2 RPM inputs (RPM1 and RPM2)

Terminal Module #1 RPM channels are 1,2
Terminal Module #2 RPM channels are 3,4
Terminal Module #3 RPM channels are 5,6
Terminal Module #4 RPM channels are 7,8
Terminal Module #5 RPM channels are 9,10

Example:

local engineRPM = get_rpm(1)
local turboRPM = get_rpm(6)

Read RPM1 channel from terminal module #1 and read RPM2 channel from Terminal module #3

get_sGbl("index", default)

If index is defined in the global status table then it returns the value associated with index
If index is not defined and optional default is provided then returns default

>note: It is recommended to always provide a default value when using this function

Example:

local cp = get_sGbl("calculatedPressure",0)

get the previously stored value "calculatedPressure", Returns 0 if not found.

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

7

get_state()

returns the current engine state(possible values currently 0 - 10)

Example:

local engineState = get_state()
if engineState > 7 then
 set_timer("WarmupTimer",1000)
end

get_sVirt("index")

returns the value of virtual channel index or returns default if the virtual channel does not
exist.

Example:

local tl = get_sGbl("timeLimit")
local et = get_sVirt("ElapsedTime",0)
if et > tl then
 set_sGbl("timeExceeded",true)
else
 set_sGbl("timeExceeded",false)
end

>Gets the value of virtual channel ElapsedTime and set value of status global "timeExceeded" if
ElapsedTime is greater than status global "timeLimit"

get_time()

returns the UNIX "epoch" time (Defined as the number of seconds elapsed since Jan 1, 1970)

Example:

local startTime = get_sGbl("startTime",0)
if startTime == 0 then
 local currentTime = get_time()
 startTime = currentTime
 set_sGbl("startTime",currentTime)
end
local et = get_time() - startTime
set_sVirt("ElapsedTime",et)

>Stores current time if first time through, otherwise calculate elapsed time

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

8

get_timer("index")

returns 1 or 2 values
First return value(Boolean) is true if timer is active(counting down) or false if timer is expired
or has not been set yet
Second return value is the number of seconds remaining or -1 if timer is not active or has not
been set yet

Example:

if not get_timer("myTimer") then
 set_sGbl("timedOut",true)
else
 set_sGbl("timedOut",false)
end

if timer is expired, then set global status "timedOut" to true

local active,remaining = get_timer("myTimer")
if not active then
 set_sVirt("timeRemaining","Expired")
else
 set_sVirt("timeRemaining",remaining)
end

getStateLabel(state)

return the label for the engine state corresponding to the parameter state

Example:

local stateLabel = getStateLabel(get_state())
local active, remaining = get_timer("myTimer")
if remaining > 0 then
 stateLabel == StateLabel.." "..remaining
end
set_sVirt("Countdown",stateLabel)

set_sGbl("index",value)

store value in the global status table under index
value can be a number or string but if storing a boolean use the tostring() function

Example:

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

9

local mpe = false
local sp = get_channel_val(1,5)
if sp > 15 then
 mpe = true
end
set_sGbl("minPressureExceeded",tostring(mpe))

store boolean value minPressureExceeded

set_sVirt("index",value)

sets a virtual status channel with channel name index

Note: Once you create a virtual channel, you can add that channel to the dashboard using
the channel name index

Example:

local sp = get_channel_val(1,5) --suction pressure
local dp = get_channel_val(1,6) --discharge pressure
local diffPress = dp - sp
set_sVirt("SuctDischDiff",diffPress)

calculate the differential between suction and discharge pressure and assign to virtual channel

set_timer("index",secs)

activate timer index and set countdown time to secs

Example:

set_timer("myTimer",300)

create timer myTimer and start countdown time to 300 seconds

5.2 Master Control Script

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

10

When you enter a control setup under the Global Control page the code that runs is called
MasterControl.

If you wish to modify this functionality you can copy this code into the Control Script editor and make
your changes to the standard configuration.

mastercontrol.lua

 local rampRate1 = get_gbl("rampRate1",0.8)1.
 local rampRate2 = get_gbl("rampRate2",0.8)2.
 local dischTerm = tonumber_def(get_gbl("spDischTerm",0),0)3.
 local dischChan = tonumber_def(get_gbl("spDischChan",0),0)4.
 local suctTerm = tonumber_def(get_gbl("spSuctTerm",0),0)5.
 local suctChan = tonumber_def(get_gbl("spSuctChan",0),0)6.
 local suctMin = tonumber_def(get_gbl("suctMin",0),0)7.
 local recycleMin = tonumber_def(get_gbl("recycleMin",0),0)8.
 local recycleMax = tonumber_def(get_gbl("recycleMax",0),0)9.
 local suctSp = tonumber_def(get_gbl("suctSp",0),0)10.
 local dischMax = tonumber_def(get_gbl("dischMax",0),0)11.
 local dischSp = tonumber_def(get_gbl("dischSp",0),0)12.
 local outputTerm = tonumber_def(get_gbl("outputTerm",0),0)13.
 local outputChan = tonumber_def(get_gbl("outputChan",0),0)14.
 local recycleTerm = tonumber_def(get_gbl("outputTerm2",0),0)15.
 local recycleChan = tonumber_def(get_gbl("outputChan2",0),0)16.

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

11

https://www.staging.altronic.a2hosted.com/doku.php?do=export_code&id=documents:de4000:de4000script&codeblock=17

 local speedRevAct = tonumber_def(get_gbl("speedRevAct",0),0)17.
 local recycleRevAct = tonumber_def(get_gbl("recycleRevAct",0),0)18.
 local outputLow = tonumber_def(get_gbl("outputLow",0),0)19.
 local outputLow2 = tonumber_def(get_gbl("outputLow2",0),0)20.
 local outputHigh = tonumber_def(get_gbl("outputHigh",0),0)21.
 local outputHigh2 = tonumber_def(get_gbl("outputHigh2",0),0)22.
 local spSuctType = get_gbl("spSuctType","linear")23.
 local spDischType = get_gbl("spDischType","linear")24.
 local suctPIDPFactor =25.
tonumber_def(get_gbl("suctPIDPFactor",0),0)
 local suctPIDIFactor =26.
tonumber_def(get_gbl("suctPIDIFactor",0),0)
 local suctPIDDFactor =27.
tonumber_def(get_gbl("suctPIDDFactor",0),0)
 local dischPIDPFactor =28.
tonumber_def(get_gbl("dischPIDPFactor",0),0)
 local dischPIDIFactor =29.
tonumber_def(get_gbl("dischPIDIFactor",0),0)
 local dischPIDDFactor =30.
tonumber_def(get_gbl("dischPIDDFactor",0),0)
 local recycleCtrl = false31.
 local recycleSuctionRev = false32.
 local recycleDischargeRev = false33.
 if recycleChan > 0 and recycleTerm > 0 then34.
 recycleCtrl = true35.
 end36.
 37.
 local dischPct = 10038.
 local suctPct = 10039.
 40.
 41.
 local dischOutput = 042.
 local suctOutput = 043.
 local rSuctOutput = 044.
 local rDischOutput = 045.
 local minLoad = 046.
 local maxLoad = 10047.
 local minRecycle = 048.
 local maxRecycle = 10049.
 local speedTarget = get_sGbl("speedTarget",0)50.
 local recycleTarget = get_sGbl("recycleTarget",0)51.
 52.
 function map_range(rangeLow,rangeHigh,input)53.
 if input <= rangeLow and input <= rangeHigh then54.
 return 055.
 end56.
 if input >= rangeLow and input >= rangeHigh then57.
 return 10058.
 end59.
 local rangeDiff = math.abs(rangeLow - rangeHigh)60.
 local min = math.min(rangeLow,rangeHigh)61.

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

12

 local retval = math.abs(input - min) / rangeDiff * 10062.
 if retval > 100 then retval = 100 end63.
 if retval < 0 then retval = 0 end64.
 return retval65.
 end66.
 67.
 local suct = false68.
 local suctVal = 069.
 if tonumber_def(get_gbl("spSuctEn",0),0) == 1 then70.
 if suctTerm > 0 and suctChan > 0 then71.
 suctVal = get_channel_val(suctTerm,suctChan)72.
 suct = true73.
 end74.
 end75.
 76.
 77.
 if suct then78.
 if spSuctType == "linear" then79.
 local suctDiff = suctSp - suctMin80.
 if suctDiff == 0 then suctDiff = 1 end81.
 if suctVal < suctSp then82.
 local suctErr = suctSp - suctVal83.
 suctPct = suctErr / suctDiff84.
 if suctPct > 1 then suctPct = 1 end85.
 if suctPct < 0 then suctPct = 0 end86.
 suctOutput = (1 - suctPct) * 10087.
 else88.
 suctOutput = 10089.
 end90.
 else91.
 set_gbl("PIDsuctEnable",1)92.
 set_gbl("PIDsuctPFactor",suctPIDPFactor)93.
 set_gbl("PIDsuctIFactor",suctPIDIFactor)94.
 set_gbl("PIDsuctDFactor",suctPIDDFactor)95.
 set_gbl("PIDsuctSp",suctSp)96.
 set_gbl("PIDsuctDeadband",0.2)97.
 local suctPidOutput = doPid("suct",suctVal)98.
 suctOutput = suctPidOutput99.
 end100.
 else101.
 suctOutput = 100102.
 end103.
 104.
 105.
 local disch = false106.
 local dischVal = 0107.
 if tonumber_def(get_gbl("spDischEn",0),0) == 1 then108.
 if dischTerm > 0 and dischChan > 0 then109.
 dischVal = get_channel_val(dischTerm,dischChan)110.
 disch = true111.
 end112.

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

13

 end113.
 if disch then114.
 if spDischType == "linear" then115.
 local dischDiff = dischMax - dischSp116.
 if dischDiff == 0 then dischDiff = 1 end117.
 if dischVal > dischSp then118.
 local dischErr = dischVal - dischSp119.
 dischPct = dischErr / dischDiff120.
 if dischPct > 1 then dischPct = 1 end121.
 if dischPct < 0 then dischPct = 0 end122.
 dischOutput = (1 - dischPct) * 100123.
 else124.
 dischOutput = 100125.
 end126.
 else127.
 set_gbl("PIDdischEnable",1)128.
 set_gbl("PIDdischPFactor",dischPIDPFactor)129.
 set_gbl("PIDdischIFactor",dischPIDIFactor)130.
 set_gbl("PIDdischDFactor",dischPIDDFactor)131.
 set_gbl("PIDdischSp",dischSp)132.
 set_gbl("PIDdischRevAct",1)133.
 set_gbl("PIDdischDeadband",0.2)134.
 local dischPidOutput = doPid("disch",dischVal)135.
 dischOutput = dischPidOutput136.
 end137.
 else138.
 dischOutput = 100139.
 end140.
 141.
 142.
 local minOutput = 100143.
 local winning = 0144.
 if suctOutput < minOutput then145.
 minOutput = suctOutput146.
 winning = 1147.
 end148.
 if dischOutput < minOutput then149.
 minOutput = dischOutput150.
 winning = 2151.
 end152.
 153.
 if suctOutput == dischOutput then154.
 winning = 0155.
 end156.
 157.
 if winning == 0 then158.
 set_gbl("PIDsuctMax",100)159.
 set_gbl("PIDdischMax",100)160.
 end161.
 162.
 if winning == 1 then163.

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

14

 set_gbl("PIDdischMax",math.min(suctOutput + 2,100))164.
 set_gbl("integraldisch",0)165.
 set_gbl("lastErrdisch",0)166.
 set_gbl("outputSumdisch",0)167.
 set_gbl("PIDsuctMax",100)168.
 end169.
 if winning == 2 then170.
 set_gbl("PIDsuctMax",math.min(dischOutput + 2,100))171.
 set_gbl("integralsuct",0)172.
 set_gbl("lastErrsuct",0)173.
 set_gbl("outputSumsuct",0)174.
 set_gbl("PIDdischMax",100)175.
 end176.
 177.
 local recycleMinOutput = minOutput178.
 179.
 local manOutput = 0180.
 --181.
**
**
 local manMode = 0182.
 local manTerm = tonumber_def(get_gbl("manTerm",0),0)183.
 local manChan = tonumber_def(get_gbl("manChan",0),0)184.
 if manTerm > 0 and manChan > 0 then185.
 local manInput = get_channel_val(manTerm,manChan)186.
 if manInput > 0.5 then187.
 manMode = 0188.
 set_sVirt("SpeedControl","Auto")189.
 else190.
 manMode = 1191.
 set_sVirt("SpeedControl","Manual")192.
 end193.
 else194.
 if get_sVirt("SpeedControl","Auto") == "Auto" then195.
 manMode = 0196.
 else197.
 manMode = 1198.
 end199.
 end200.
 201.
 --if manMode == 1 and get_state() == 8 then202.
 local manSpeed = get_sVirt("ManualSpeed",0)203.
 local idleSpeed = get_gbl("idleSpeed",0)204.
 local lowSpeed = get_gbl("lowSpeed",0)205.
 local highSpeed = get_gbl("highSpeed",0)206.
 local maxSpeed = get_gbl("maxSpeed",0)207.
 local diff = highSpeed - lowSpeed208.
 if diff < 0 then diff = 0 end209.
 local maxDiff = maxSpeed - idleSpeed210.
 if maxDiff < 0 then maxDiff = 0 end211.
 212.

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

15

 if get_sVirt("speedBump",0) ~= 0 then213.
 local si = get_gbl("SpeedIncrement",0)214.
 local sip = get_param("SpeedIncrement",0)215.
 if sip ~= 0 then si = sip end216.
 manSpeed = manSpeed + (si * get_sVirt("speedBump",0))217.
 set_sVirt("speedBump",0)218.
 end219.
 220.
 if get_sVirt("AutoManBump",0) > 0 then221.
 set_sVirt("SpeedControl","Auto")222.
 set_sVirt("AutoManBump",0)223.
 end224.
 225.
 if get_sVirt("AutoManBump",0) < 0 then226.
 set_sVirt("SpeedControl","Manual")227.
 set_sVirt("AutoManBump",0)228.
 end229.
 230.
 if manMode == 1 then231.
 local manSpeedTerm = tonumber_def(get_gbl("manSpeedTerm",0),0)232.
 local manSpeedChan = tonumber_def(get_gbl("manSpeedChan",0),0)233.
 if manSpeedTerm > 0 and manSpeedChan > 0 then --*** USE SPEED234.
POT TO SET SPEED
 local speedInput =235.
tonumber(get_channel_val(manSpeedTerm,manSpeedChan))
 local speedPct = (speedInput / 5) * 100236.
 if speedPct > 100 then speedPct = 100 end237.
 if speedPct < 0 then speedPct = 0 end238.
 manOutput = speedPct239.
 manSpeed = math.floor((speedPct / 100) * diff + lowSpeed +240.
0.5)
 else -- Use ManualSpeed to set speed241.
 manOutput = ((manSpeed - lowSpeed) / diff) * 100.0242.
 if manOutput < 0 then manOutput = 0 end243.
 if manOutput > 100 then manOutput = 100 end244.
 end245.
 minOutput = manOutput246.
 else247.
 --speedTarget =248.
 local stRpm = (speedTarget/100) * maxDiff + idleSpeed249.
 if stRpm < lowSpeed then stRpm = lowSpeed end250.
 if stRpm > highSpeed then stRpm = highSpeed end251.
 manSpeed = math.floor(stRpm)252.
 end253.
 254.
 if manSpeed < lowSpeed then255.
 manSpeed = lowSpeed256.
 end257.
 if manSpeed > highSpeed then258.
 manSpeed = highSpeed259.
 end260.

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

16

 261.
 set_sVirt("ManualSpeed",manSpeed)262.
 263.
 264.
 265.
 --266.
**
**
 267.
 268.
 local output1 = 0269.
 local output2 = 0270.
 if spSuctType == "pid" or spDischType == "pid" then271.
 output1 = map_range(outputLow,outputHigh,minOutput)272.
 set_sVirt("out1",output1)273.
 output2 = map_range(outputLow2,outputHigh2,recycleMinOutput)274.
 set_sVirt("out2",output2)275.
 local hasRPM = idleSpeed > 0 and lowSpeed > 0 and highSpeed >276.
0 and maxSpeed > 0
 if outputTerm and outputChan then277.
 if hasRPM then278.
 local speedRpm = output1 / 100 * (highSpeed - lowSpeed) +279.
lowSpeed
 speedTarget = (speedRpm - idleSpeed) / (maxSpeed -280.
idleSpeed) * 100
 else281.
 speedTarget = output1282.
 end283.
 end284.
 if recycleTerm and recycleChan then285.
 set_ao_val(recycleTerm,recycleChan,output2)286.
 end287.
 288.
 if get_state() == 9 then289.
 speedTarget = get_sGbl("speedTarget",0)290.
 if speedTarget > 0 then speedTarget = speedTarget -291.
rampRate1 end
 if speedTarget < 0 then speedTarget = 0 end292.
 end293.
 if get_state() < 8 then speedTarget = 0 end294.
 set_sGbl("speedTarget",speedTarget)295.
 set_ao_val(outputTerm,outputChan,speedTarget)296.
 set_sVirt("spTarget",speedTarget)297.
 298.
 if hasRPM then299.
 local sRpm = (speedTarget/100) * maxDiff + idleSpeed300.
 set_sVirt("Speed Target",math.floor(sRpm + 0.5))301.
 end302.
 303.
 304.
 305.

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

17

 else306.
 307.
 -- Remember that minOutput is 0 - 100 pct of lowSpeed <->308.
highSpeed
 -- We need to convert this to 0 - 100 pct of idleSpeed <->309.
maxSpeed
 local suctPct = map_range(outputLow,outputHigh,minOutput)310.
 local speedRpm = suctPct / 100 * (highSpeed - lowSpeed) +311.
lowSpeed
 minOutput = (speedRpm - idleSpeed) / (maxSpeed - idleSpeed) *312.
100
 313.
 314.
 315.
 if minOutput <= speedTarget then316.
 speedTarget = speedTarget - rampRate1317.
 if speedTarget < minOutput then speedTarget = minOutput end318.
 else319.
 speedTarget = speedTarget + rampRate1320.
 if speedTarget > minOutput then speedTarget = minOutput321.
end
 if speedTarget > maxLoad then speedTarget = maxLoad end322.
 end323.
 if speedTarget > maxLoad then speedTarget = maxLoad end324.
 if speedTarget < minLoad then speedTarget = minLoad end325.
 326.
 if recycleCtrl then327.
 local recyclePct =328.
map_range(outputLow2,outputHigh2,recycleMinOutput)
 if recyclePct <= recycleTarget then329.
 recycleTarget = recycleTarget - rampRate2330.
 if recycleTarget < recyclePct then recycleTarget =331.
recyclePct end
 else332.
 recycleTarget = recycleTarget + rampRate2333.
 if recycleTarget > recyclePct then recycleTarget =334.
recyclePct end
 end335.
 if recycleTarget > maxRecycle then recycleTarget =336.
maxRecycle end
 if recycleTarget < minRecycle then recycleTarget =337.
minRecycle end
 local recycleOutput = recycleTarget338.
 if get_state() < 8 then339.
 recycleTarget = 0340.
 end341.
 if recycleRevAct == 1 then342.
 recycleOutput = 100 - recycleOutput343.
 end344.
 set_ao_val(recycleTerm,recycleChan,recycleOutput)345.
 set_sGbl("recycleTarget",recycleTarget)346.

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

18

 set_sVirt("recycleTarget",recycleTarget)347.
 end348.
 349.
 if get_state() == 9 then350.
 speedTarget = get_sGbl("speedTarget",0)351.
 if speedTarget > 0 then speedTarget = speedTarget -352.
rampRate1 end
 if speedTarget < 0 then speedTarget = 0 end353.
 end354.
 if get_state() < 8 then speedTarget = 0 end355.
 set_sGbl("speedTarget",speedTarget)356.
 set_ao_val(outputTerm,outputChan,speedTarget)357.
 set_sVirt("spTarget",speedTarget)358.
 local sRpm = (speedTarget/100) * maxDiff + idleSpeed359.
 set_sVirt("Speed Target",math.floor(sRpm + 0.5))360.
 361.
 362.
 end363.

From:
https://www.staging.altronic.a2hosted.com/ - wiki STAGING !!!!!

Permanent link:
https://www.staging.altronic.a2hosted.com/doku.php?id=documents:de4000:de4000script

Last update: 2022/07/08 13:11

DE-4000 SCRIPTING REFERENCE MANUAL
02-26
All rights reserved © ALTRONIC, LLC 2026

19

https://www.staging.altronic.a2hosted.com/
https://www.staging.altronic.a2hosted.com/doku.php?id=documents:de4000:de4000script

	Table of Contents
	DE-4000 SCRIPTING REFERENCE MANUAL
	1. Begin on Dashboard on DE-4000 system environment
	2. Choose “Global” from menu on left side of screen
	3. In the Sub-Menu on the Left side select “Scripts”
	4. Select one of the page icons under one of the 4 script options to open editor
	5. Scripting can be entered into the editor
	5.1 DE-4000 Lua Script API
	create_param("index",default,"catergory","description")
	get_channel_val(terminal,channel)
	get_gbl("index",default)
	get_param("index")
	get_rpm(channel)
	get_sGbl("index", default)
	get_state()
	get_sVirt("index")
	get_time()
	get_timer("index")
	getStateLabel(state)
	set_sGbl("index",value)
	set_sVirt("index",value)
	set_timer("index",secs)

	5.2 Master Control Script

